If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12y^2-16y-12=0
a = 12; b = -16; c = -12;
Δ = b2-4ac
Δ = -162-4·12·(-12)
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{13}}{2*12}=\frac{16-8\sqrt{13}}{24} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{13}}{2*12}=\frac{16+8\sqrt{13}}{24} $
| 59=7j=3 | | 85=11/x | | 5/7(x-9)=11 | | (-x2-2x)=(x2-4x-3) | | 8y=(2y+24) | | x(x+2)=-(x-1)(x-3) | | 4y=(8y-16) | | 2x=(3x-3) | | 3b-8=2b+15 | | 12y/y+4y^2/y=0 | | 54-n=222-n | | 74-52=33-n | | 28x=250 | | 99-30=33-n | | c+5=2c-12 | | 4p+1=-3p-2 | | x+x+3/4x+3=300 | | y=2×17 | | 2/3=v/8 | | y=X×2 | | t/10=15/25 | | .p-11=5 | | b^2+9b-24=0 | | 86+u=99 | | 10/3=8/k | | 10^-7x-9=51 | | 2(e-2)=-3-2e | | 5(x+3)+3(x-5)=5x+15+3x-15=8x | | 27−2x2=−53 | | 4(b+3)+4=2b-3(b-2) | | 3(r+6)=-2(r+1) | | 5y+8+6y-18=5y+6y+8-18=11y-10 |